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SCATTERING FROM RIGID AND FLUID-LOADED ELASTIC OBJECTS

M. F. Werby
Code 221, Numerical Modeling Division
Naval Oceanographic and Atmospheric Research Laboratory
Stennis Space Center, MS 39529
US.A.

ABSTRACT

The computation of scattered fields from fluid-loaded bounded objects can be treated in a consistent manner
using the extended boundary condition (EBC) or T-matrix method for electromagnetic, elastic, and acoustic
problems. We outline the general principles of the EBC method and apply it to problems of engineering interest
which pertain to acoustical scattering from submerged three-dimensional elongated impenetrable objects or elastic
solids and shells. Several physical examples of interest are offered and interpreted.

INTRODUCTION

Several techniques are available for describing waves that scatter from objects of known constitution and
geometry. Many of them are rather specific or have intractable numerical pitfalls. It is therefore desirable to obtain
a formulation that allows for general objects, frequency ranges, and boundary conditions, and that overcomes
numerical difficulties commonly encountered in several broad classes of numerical methods. In this paper we briefly
describe a consistent, unified and manageable numerical approach useful for researchers interested in solving any
of a wide class of scattering problems. It is based on the coupling of the exterior and interior solutions of the surface
boundary representation of the Helmholtz orelastodynamic equations and yields the Extended Boundary Condition
(EBC) method of Waterman'-?, The EBC method avoids numerical problems often encountered by other techniques.

We present numerous physical examples which are chosen not only for their intrinsic interest but also because they
fepresent comparatively difficult problems to solve by other means.

EBC FORMULATION

_ The EBCtechnique is a boundary integral method that couples the exterior direct scattering field solution
With the interior field solution. The method was initially developed for elecctromagnetic scartering by Waterman! in
1965, and subsequently for acoustical scartering by him? in 1969. The method has since evolved and is employed
in all areas of classic scattering at various levels of sophistication®™®, As with other methods, it is often possible to
make both structural and numerical variations in the basic EBC approach. We have developed formulations*s which
‘:Jo\n’ experience have proven the most favorable for numerical implementation and we employ them in this work.

¢ begin with the simplest formulation, for scattering from an impenetrable object of rotarion.

be 'I"he Huygen's-Poincare’ integral representation of the scattered field U exterior to the bounded object, can
described by the following equation:

Ut} = Uinj+ f, [UHe )G(r, 1Van-G(r,1)3U+r'Van)ds. (n
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The quantity, U_ is the scalar wavefield on the object surface, G is the outgoing Green's function, r'is taken
on the surface of the object, and n is a unit outward normal vector to the surface of the object. S is taken to be the
surface of the bounded object. In the subsequent development for elastic targets, U, will be the displacement vector,
and G the Green's dyadic. An additional expression required can be obtained by expressing the Huygen's-Poincare’
relation at a point interior to the object, which leads to the following equation:

0 = U+, [U,@)3G(",r¥an-G(",r)U (r)/en]dS @)

where r" is an object interior point. In this case, the field can be described as being "nulled™; hence, the nomenclature
“null field" method. |

Eqs. (1) and (2) yield the extended boundary condition equations. Since in their present form they are not
directly useful, we now reduce them to a form amenable to numerical computation. Elastc targets submerged
in & fluid require far greater mathematical detail, as indicated by Pao® and the Varadans’. Let us assume
that dU (1)/0n = 0, so that we obtain the expressions

U(r) = Un)+[, (U, (r)3G(r, r')/3n]dS 3)
and

0 =U[(r) +{, (U (*)eG(r,r')Vn]dS. (4)

To solve these expressions, it is convenient to represent U (1), U (r) and G(r,r’) in some suitable series
expansion, which upon truncation leads to matrix equations that can be solved using digital computers. The Green's
function, G, is a normal operator, and thus can be represented by the biorthogonal series

G(rx) = ikZRe @(r<)@(r>) (5)

where r<and r> are the greater and lesser of the two points r and r*relative to the origin of the object. U,, the incident - §

wavefield, is known and can be shown to be: é
©

U(r) = Za Req, ().

Similarly the scattered field U (r) = U(r) — U (r) can be expanded as:

U(n) = 2f_ @, (r) 6)
v‘/hjch leads to

a, = -ik[U (r) d9(r')/3n dS. ) M
and

f = ikfU (r) dReq(r)/2n dS. ™

The following expansicn has been proven to satisfy closure on the surface for the rigid problem:
U.(r)=Z_bReq,(r) : @®

where b, is the only unknown on the right hand side of Ea. (7). Tlis reduces (7) to an expression in which (hc -
expansion coefficients b_ are the only quantities to be determined. We obtain

2,=-I_b_[9, ) Req (r)andS=-_b_Q_, (9)
f,= Z_b_ [Req, (r)d Req (r¥on dS=I_b_ReQ_. 9
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where Q_ is an clement of some known matrix. In mawix form, Equations (9) and (9°) can be expressed
a = -ikQb (10)
¢ =ik Re Qb. (1

There are a variety of numerical strategies to attack this computational problem. The most straightforward
(but unfortunately the most problematic) method would be direct numerical inversion, to eliminate b from Eq. (10)
and replace itin Eq. (11), to arrive at a formally convenient expression for the scattered wavefield, represented by f.
This leads to Eq. (12), relating the scattered field f with the incident field a.

f=-Re QQ'a. (12)

Qis 2n n x n matrix, and a and f are [ x n column vectors. We can view this as a mapping from the incident
field a 10 the scattered field f via the quantity -ReQQ. Itis conventional in certain areas of physics to describe such
a mapping as a transition; hence this computational mapping is often referred to as a transition or "T matrix”
operation.

As noted, a straightforward evaluation of Eq. (12) is usually not the most efficient way to solve for f. An
alternate method devised by us to obviate this difficulty is the coupled higher-order T-matrix** method described
below. The most elementary formulation of this solution is to block Q into four submatrices (Q(ij), where ij =(l.m)
and demand that the Q(ii) matrices be square. Tuis results in a new T matrix of order (1,1) which is convergent and
requires an inverse no larger than the largest pair of (ii). :

TW) = -PG? (13)
where

P = Re Q) - Re Q(lm) Q''(mm) Q(ml) (14)
and

G = Q) - Qm)Q"(mm) Xml). (15)

Eq. (10) is related to an integral equation of the first kind, and can be transformed using a method developed
by us into an eigenvalue problem. The unknown quantity in Eq. (10) is the surface term associated with the column
vector b, By obezining b directly, we then have the solution for the scattered field f via Eq. (11). To accomplish this
we create & Hermitan magix H = Q Qf, where Q' is the adjoint of Q. (It is easy to show that H is self-adjoint or
Hermitian). The eigeavalues A, and the eigenvectors f, can be obtained in a straightforward manner, described
below, where

HB =B, , | (16

Itis known that the eigenvalues A, of Hermitian operators are positive, real and monotonically increasing,
and that the eigenvectors §, form an orthonormal set of vectors. Moreover, it can be shown that these vectors span
the space associated with this problem. Thus, we can expand the unknown surface quantity b in terms of the B/'s.
By exploiting the orthonormality of the eigenfunctions of H, we atrive at the following expression for f:

f=-Re QB IAQB). : an

The more complicated case of elastic targets imbedded in a fluid may also be derived, in which many of the
Previous procc dures can be used. Let us outline the solution of this problem for an elastic solid. We still require the
Huygen's-Poincare’ integral in the fluid due to scattering from the target. However, we also require a generalizaton
of the expression for an object in an elastic environment. An expression suitable for the problem we wish to develop

been obuained by Varatharajulu and Pao® in a form appropriate to derive a transition matrix for elastic targets,
d will be used in the following equations. For the fluid we have:
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Ur)=U) + [, U-tU) UJdS  (interior poine) (18)

0=U(") + f[t,U-tU) UJdS (exterior point). (19)
Here raction t=n « (Al VU+ u(VU+ UV)}. In the solid, we have an analogous pair of equations

U =0+ [[tU-«C) UldS (interior poin') (20)

0=U() +J[tU~- t(ﬁ) U]lds (exteric. point) (z1)

where 1" is in the object interior and r’ the exterior. t_(t ) and U_(U) are the traction and displacement vectors on
the surface as approached from the object’s interior (exterior).

Imposed on these equations we have the following boundary conditions:

U.n=U_.n (22)
ten=t.n i (23)
txn=0. (24)

In the following, we consider the case of general three-dimensional solids, using a spherical coordinate
representation. Here the outward wave solutions to the full elastic wave equation are

vl = (k) 1V (h(x) Y (8.9) (25)
y2,, = VAG+1)2 ¥ x (hkn) Y, (6.6)) 26)
Wi =1k x(y2) @7

where h, are spherical Hankel functions of the first kind, and Y,™'s are spherical harmonics (normalized to unity).
The total wavenumbers of longitudinal and transverse waves are k and x. Normalization is chosen so that each
wavefunction is normalized to a unit flux for any closed surface that encloses the origin. For a nonviscous fluid, only
k is needed, so that (x /k) is replaced by unity in Eq. (26).

As in the previous T-matrix formulation for acoustic targets, the general technique of obtaining a transition-
matrix for an elastic solid is to eliminate the unknown surface wavefields and tractions. This eliminaton is
accomplished by judicious use of the boundary conditions, the partial wavefield expansions (Huygen's principle for
waves interior to the scatterer). The original derivation of the following expression is given by Bostrom®. By suitable
elimination, one can arrive atreladon (28), between the incident field partial wave coefficients (a) and scattered field
pardal wave coefficients (f):

f=-QR'P(QR'P)'a. 28)

For completeness we list the results for an elastic shell”:

f=-Q*M'PQ@M'P)'a . (29)
where M = Q2+RT,+iT,, and Q, P, and R are defined by the following surface integrals:

QG pii = kK¥/p, @[ (A, V -« (OuRe)y. ™ [n-(OuRe)y ]
- (n+ (QWRe)Y,In - t, (OwRe) ¥, @) - a8
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i = k2 /0,0 (1, [(OWRe) ¥, ] - [(OwRe) v, Pxn] (31)
R = e (OuRe) ,P1(a - )IOWRe) xn)] - S
P, = ki/p,0'f[(n - 1) Re yFn -y, ] -dS (32)
T, = -ReQ,(QY" (33)

T, corresponds to scattering from an evacuated inclusicn in an elastic environment. Without going into detail
regardi ;mc solution of Eqs. (28) or (29) it is best to employ the unitary method®,

In the preceding, we have outlined methods that include a broad spectrum of boundary conditions to describe
scattering from axially symmetric targets. Impiementing these expressions is not without pitfalls, and much of our
past efforts has focused on overcoming them, with good success. These methods are suitably general and effective
10 address a large class of problems without encountering complications experienced by other numerical schemes.

Below we apply the above EBC/T-matrix formulations to a number of physically illustrative engineering
problems, that underscore some of the more dramatic computational features.

APPLICATIONS OF THE T-METHOD TO ENGINEERING PROBLEMS

We first treat scattering from rigid impenetrable objects. The two simplest cases are for spheroids and for
cylinders with hemispherical caps. In addition, we also consider the case of scattering from elastic solids ,where
we specifically examine resonance phenomena.

Mamix Applicas I ble Prokl

There are two classes of targets for impenetrable problems, i.e., soft and hard scatterers. They do not support
body resonances; therefore; we examine acoustic quantities appropriate for nonresonant targets such as angular
disaibutions which are dependent on target geometry and can be useful to determine such features of target shape
as symmetry or clongation. In particular, reflection, diffraction, and generalized Snell's law behavior can be
observed as curved-surface analogs for the plane-layered case.

Bistatic angular distributions correspond to measurement of a scattered field at any point in space for some
incident wave fixed relative to some source-object orientation. In Fig. 1. we examine a rigid spheroid of aspect
(length-to-width) ratio of 16:1. Fig. 1 a-d represent scattering from the object along the #xis of symmetry (end-on)
(2), 30 (b), 60 (c) and 90 (d) degrees relative to the symmetry axis (broadside). The values of the incident wavefield
frequency are expressed using the dimensionless quandry kL/2, where L is the object length and k the total
wavenumber (k=27/A). The value of kL/2 in Fig. 2 is 200, which implies that the object is about 70 wavelengths
long and thus in the intermediate-frequency region where neither low nor high frequency approximations apply. In
all figures frequency is sufficiently high that wave diffraction effects are significant in the forward scattering
direction. Perhaps the most interesting feature of the four plots (Fig. 1 (a-d)) correspouds to a reflection at the (fairly
flat) side of the object for scattering angles of 30 and 60 degrees. This reflection can occur only for very elongated
objects that approach flat surfaces, so that the reflected angle is almost the same as the incident angle (relative to
astraight line through the axis of symmetry).

EBC! la , El I3 S (-l

We now examine a phenomenon specific to elastic objects with smooth boundary conditions surrounded by
an acoustic fluid, namely, body resonances. The body resonances examined originate from the curved-surface
equivalents of seismic interface waves of pscudo-Rayleigh or Scholte type, propagating circumferentially to form
standing waves on a bounded object. If phase velocities are slowly-varying (as a function of frequency) at the object
surface, resonances occur at discrete values of k1./2. These resonances manifest themselves in a prescribed manner
(described below). For elongated elastic solids, three distinct resonance types occur. The first kind that we wisk t0
illustrate has to do with bending modes or flexural resonances. For unsupported spheroids a plane incident wave at
45 degrees relative to the axis of symmetry can excite these modes illustrated in Fig. 2a and 2b for aspect ratios of
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4 and 5 to 1. It can be shown’ that the lowest mode corresponds to 2, and thereafter 3, 4, etc. The intcrcsﬁng
about these resonances is they can be predicted by exact bar theories and coincide nicely with resuy here.
particular interest is the effect that with increasing aspect ratio the onset of resonances occur at lower k1 /) Val b -
a» opposed to Rayleigh resonances. The secend kind (at lower frequencies) are due toleaky Rayleigh waves andh:'m
been shown to be related to both target geometry and material parameters (notably shear modulus ang densix;).i
Resonances can in this case best be observed by examining the back-scatiered echo amplitude and phase resp
plotted as a function of kL/2. We illustrate this for an aluminum spheroid of aspect ratio 10to 1 atend on incidency!
Here we see two resonances superimposed on the semiperiodic pattern due to Franz waves associated wity a
scattering. If we subtract rigid scattering (in partial wave space) from the elastic response then we are lef; with the
resonance response illustrated in Fig. 4 which shows that for aluminum the first resonance is broad while the R
diminishes, in contrast to WC targets which yield small narrow resonances at the lower value and a larger resonance 3
for the next value. In addidon to the above wave phenomena, it is also possible to excite "whispering gall,
resonances, which we mention next. Finally, we examine broadside resonances for a4 to 1 steel spheroid. Here
canexcite three phenomena. At the lowest value we can see aspike representing the lowest order Rayleigh resonance %
seen end on corresponding to a standing wave circumnavigating the largest meridian of the spheroid. We alsg see 12
weak Franz waves similar those due to a cylinder and than we see the lowest order Rayleigh and Whispering Gall
resonances corresponding to circumferential waves around the smallest meridian.
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Figure 3. Back scattered signal from aluminwm spheroid of aspect ratio of 1Q.to 1 end on incidence.
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Figure 5. Back scattered signal from steel spheroid of aspect ratio of 4 to | broad side incidence.
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